The lack of genetic variation underlying thermal transcriptomic plasticity suggests limited adaptability of the Northern shrimp, Pandalus borealis

Author:

Leung Christelle,Guscelli Ella,Chabot Denis,Bourret Audrey,Calosi Piero,Parent Geneviève J.

Abstract

IntroductionGenetic variation underlies the populations’ potential to adapt to and persist in a changing environment, while phenotypic plasticity can play a key role in buffering the negative impacts of such change at the individual level.MethodsWe investigated the role of genetic variation in the thermal response of the northern shrimp Pandalus borealis, an ectotherm species distributed in the Arctic and North Atlantic Oceans. More specifically, we estimated the proportion transcriptomic responses explained by genetic variance of female shrimp from three origins after 30 days of exposure to three temperature treatments.ResultsWe characterized the P. borealis transcriptome (170,377 transcripts, of which 27.48% were functionally annotated) and then detected a total of 1,607 and 907 differentially expressed transcripts between temperatures and origins, respectively. Shrimp from different origins displayed high but similar level of transcriptomic plasticity in response to elevated temperatures. Differences in transcript expression among origins were not correlated to population genetic differentiation or diversity but to environmental conditions at origin during sampling.DiscussionThe lack of genetic variation explaining thermal plasticity suggests limited adaptability in this species’ response to future environmental changes. These results together with higher mortality observed at the highest temperature indicate that the thermal niche of P. borealis will likely be restricted to higher latitudes in the future. This prediction concurs with current decreases in abundance observed at the southern edge of this species geographical distribution, as it is for other cold-adapted crustaceans.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3