Stable isotopes elucidate body-size and seasonal fluctuations in the feeding strategies of planktivorous fishes across a semi-enclosed tropical embayment

Author:

Skinner Christina,Pei Yu-De,Morimoto Naoko,Miyajima Toshihiro,Wyatt Alex S. J.

Abstract

Reef fish may switch feeding strategies due to fluctuations in resource availability or through ontogeny. A number of studies have explored these trophodynamics using carbon (δ13C) and nitrogen (δ15N) stable isotopes, but additional tracers such as sulfur isotopes (δ34S) show strong potential in systems, where δ13C and δ15N results are ambiguous. We tested the utility of adding δ34S to conventional δ13C and δ15N analysis to detect seasonal and body size changes in resource use of two planktivorous damselfish, Dascyllus reticulatus and Dascyllus trimaculatus across the Puerto Galera embayment in the Philippines. We analyzed stable isotope ratios (δ13C, δ15N, and δ34S) in multiple fish tissues (liver, eye, and muscle) to represent different dietary time frames. We then compared fish tissue isotopes against particulate organic matter (POM) (δ13C and δ15N) and POM suspension feeder (the tunicate Polycarpa aurata: δ13C, δ15N, and δ34S) across the same sites. There were size-based and seasonal differences in damselfish resource use, the latter of which was most pronounced in the fast-turnover liver. Small fish (<70 mm) demonstrated significant seasonality, appearing to switch their resource use between the rainy season and the dry season, while there was no seasonal variation in larger fish (>70 mm). This suggests that smaller fish across the embayment employ an opportunistic feeding strategy to take advantage of fluctuating resource availability, while larger fish exhibits more consistent resource use. Isotope ratios of tunicates and POM further confirmed strong seasonality in this system and a lack of a spatial isotopic gradient. δ15N did not seem to contribute to consumer resource use patterns, while by contrast, δ34S fluctuated significantly between sampling periods and was crucial for demonstrating seasonality in resource use. We recommend including δ34S when attempting to disentangle seasonal differences in resource use in aquatic food webs using stable isotopes.

Funder

Science and Technology Research Partnership for Sustainable Development

Japan Science and Technology Agency

Japan International Cooperation Agency

Southern Marine Science and Engineering Guangdong Laboratory

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3