Plant Phenology Dynamics and Pollination Networks in Summits of the High Tropical Andes: A Baseline for Monitoring Climate Change Impacts

Author:

Pelayo Roxibell C.,Llambí Luis D.,Gámez Luis E.,Barrios Yeni C.,Ramirez Lirey A.,Torres J. Eloy,Cuesta Francisco

Abstract

Analyzing plant phenology and plant–animal interaction networks can provide sensitive mechanistic indicators to understand the response of alpine plant communities to climate change. However, monitoring data to analyze these processes is scarce in alpine ecosystems, particularly in the highland tropics. The Andean páramos constitute the coldest biodiversity hotspot on Earth, and their species and ecosystems are among the most exposed and vulnerable to the effects of climate change. Here, we analyze for the first time baseline data for monitoring plant phenological dynamics and plant–pollinator networks along an elevation gradient between 4,200 and 4,600 m asl in three mountain summits of the Venezuelan Andes, which are part of the GLORIA monitoring network. We estimated the presence and density of plants with flowers in all the summits and in permanent plots, every month for 1 year. Additionally, we identified pollinators. We calculated a phenological overlap index between species. We summarized the plant–pollinator interactions as a bipartite matrix and represented a quantitative plant–pollinator network, calculating structural properties (grade, connectance, nestedness, and specialization). We also evaluated whether the overall network structure was influenced by differences in sampling effort, changes in species composition between summits, and phenology of the plant species. Finally, we characterized the pollination syndrome of all species. Flowering showed a marked seasonality, with a peak toward the end of the wet season. The overall phenological overlap index was low (0.32), suggesting little synchrony in flowering among species. Species richness of both plants and pollinators decreased along the elevation gradient. Flies, bumblebees, and hummingbirds were the most frequent pollinators in the network, while entomophily and anemophily were the prevailing pollination syndromes. The interaction network in all summits showed high connectance values, significant specialization (H2), and low nestedness. We did not find a significant effect of sampling effort, summit plant species composition, or plant phenology on network structure. Our results indicate that these high tropical alpine plant communities and their plant-pollination networks could be particularly vulnerable to the loss of species in climate change scenarios, given their low species richness and functional redundancy coupled with a high degree of specialization and endemism.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference87 articles.

1. Phenology and interspecific ecological interactions of Andean biota in the face of climate change;Aguirre;Climate Change and Biodiversity in the Tropical Andes,2011

2. A straightforward computational approach for measuringnestedness using quantitative matrices.;Almeida-Neto;Environ. Model. Softw.,2011

3. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change.;Anderson;Proc. Biol. Sci.,2012

4. Facilitation among plants in alpine environments in the face of climate change.;Anthelme;Front. Plant Sci,2014

5. Tendencias altitudinales en mecanismos de polinización en la zona andina de los Andes templados de Sudamérica.;Arroyo;Rev. Chil. Hist. Nat,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3