Ancient and modern scats record broken ecological interactions and a decline in dietary breadth of the critically endangered kākāpō parrot (Strigops habroptilus)

Author:

Boast Alexander P.,Wood Jamie R.,Bolstridge Nicola,Perry George L. W.,Wilmshurst Janet M.

Abstract

Threatened animal taxa are often absent from most of their original habitats, meaning their ecological niche cannot be fully captured by contemporary data alone. Although DNA metabarcoding of scats and coprolites (palaeofaeces) can identify the past and present species interactions of their depositors, the usefulness of coprolites in conservation biology is untested as few endangered taxa have known coprolite records. Here, we perform multilocus metabarcoding sequencing and palynological analysis of dietary plants of >100 coprolites (estimated to date from c. 400–1900 A.D.) and > 100 frozen scats (dating c. 1950 A.D. to present) of the critically endangered, flightless, herbivorous kākāpō (Strigops habroptilus), a species that disappeared from its natural range in Aotearoa-New Zealand (NZ) after the 13th C. A.D. We identify 24 orders, 56 families and 67 native plant genera unrecorded in modern kākāpō diets (increases of 69, 108 and 75% respectively). We found that southern beeches (Nothofagaceae), which are important canopy-forming trees and not an important kākāpō food today, dominated kākāpō diets in upland (c. >900 m elevation) habitats. We also found that kākāpō frequently consumed hemiparasitic mistletoes (Loranthaceae) and the holoparasitic wood rose (Dactylanthus taylorii), taxa which are nutrient rich, and now threatened by mammalian herbivory and a paucity of dispersers and pollinators. No single dataset or gene identified all taxa in our dataset, demonstrating the value of multiproxy or multigene datasets in studies of animal diets. Our results highlight how contemporary data may considerably underestimate the full dietary breadth of threatened species and demonstrate the potential value of coprolite analysis in conservation biology.

Funder

University of Auckland

Royal Society

Ministry of Business, Innovation and Employment

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3