Physiology Drives Reworking of Amino Acid δ2H and δ13C in Butterfly Tissues

Author:

Morra Kaycee E.,Newsome Seth D.,Graves Gary R.,Fogel Marilyn L.

Abstract

Studies of animal movement and migration over large geospatial scales have long relied on natural continental-scale hydrogen isotope (δ2H) gradients in precipitation, yet the physiological processes that govern incorporation of δ2H from precipitation into plant and then herbivore tissues remain poorly understood, especially at the molecular level. Establishing a biochemical framework for the propagation of δ2H through food webs would enable us to resolve more complicated regional-scale animal movements and potentially unlock new applications for δ2H data in animal ecology and eco-physiology. Amino acid δ2H analysis offers a promising new avenue by which to establish this framework. We report bulk tissue δ2H, δ13C, and δ15N data as well as amino acid δ2H and δ13C data from three Pipevine swallowtail (Battus philenor) tissues—caterpillars, butterfly bodies, and wings—as well as their obligate plant source: pipevine leaves (Aristolochia macrophylla). Insects are often dominant herbivores in terrestrial food webs and a major food source for many higher-level consumers, so it is particularly important to understand the mechanisms that influence insect tissue δ2H values. Our data reveal extensive δ2H variation within and among individuals of a relatively simple plant-herbivore system that cannot be explained by temporal or geospatial gradients of precipitation δ2H or dietary differences. Variations in essential amino acid δ2H and δ13C indicate that B. philenor acquire these compounds from an additional source that is isotopically distinct from pipevine leaves, potentially gut microbes. We also found multiple isotopic carryover effects associated with metamorphosis. This study emphasizes the strong influence of physiology on consumer-diet δ2H discrimination in a local population of pipevines and swallowtails and provides a template that can be broadly applied to Lepidoptera—the second most diverse insect order—and other holometabolous insects. Understanding these physiological mechanisms is critical to interpreting the large degree of δ2H variation in consumer tissues often observed at a single collection site, which has implications for using δ2H isoscapes to study animal movement. Further investigation into amino acid δ2H holds promise to elucidate how subsets of amino acids may be best utilized to address specific ecological and physiological questions for which bulk tissue δ2H is insufficient.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3