Relationships Between Migration and Microbiome Composition and Diversity in Urban Canada Geese

Author:

Obrochta Sean,Savo Sardaro Maria Luisa,Amato Katherine R.,Murray Maureen H.

Abstract

Microbiome analysis presents an opportunity to understand how urban environments affect avian physiology. For example, habitat use can affect microbiome diversity and composition, and hosts with more diverse gut microbiota are thought to be more resistant to pathogens and have increased fitness. However, the microbiome is an understudied aspect of avian ecology, particularly in the context of migration and urbanization in wild birds. For this study, we hypothesized that, within urban birds, migrants would exhibit greater microbial diversity and inter-individual variation in microbiome composition than residents because they are exposed to more diverse habitats. We focused on Canada geese (Branta canadensis), one of many migratory species that exhibit increasingly more year-round residency in cities. We used 16S rRNA gene amplicon sequencing to quantify microbiome taxonomic composition in fecal samples from 32 GPS-tracked Canada geese, 22 of which were year-round residents of the Chicago area and 10 of which were migrants. Similar to recent studies on wild species feeding near human habitation, urban resident geese had higher gut microbial diversity than migrants. They also had increased inter-individual variation in microbiome composition and, on average, lower relative abundances of bacteria in the phylum Firmicutes, and the genera Terrisporobacter, Turicibacter, and Cellulosilyticum, which all have metabolic functions that may aid in goose digestion. Therefore, the gut microbiome of resident geese may provide fewer potential health benefits. These patterns may be a result of anthropogenic influences on aspects of resident goose ecology, such as diet, as well the influence of migration on migrant goose ecology and biology. Overall, our results suggest that reduced migration for urban-adapted wildlife species may have important consequences for physiology and health.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3