Mathematical approach of fiber optics for renewable energy sources using general adversarial networks

Author:

Hasanin Tawfiq,Manoharan Hariprasath,Alterazi Hassan A.,Srivastava Gautam,Selvarajan Shitharth,Lin Jerry Chun-Wei

Abstract

It is significantly more challenging to extend the visibility factor to a higher depth during the development phase of a communication system for subterranean places. Even if there are numerous optical fiber systems that provide the right energy sources for intended panels, the visibility parameter is not optimized past a certain point. Therefore, the suggested method looks at the properties of a fiber optic communication system that is integrated with a certain energy source while having external panels. A regulating state is established in addition to characteristic analysis by minimizing the reflection index, and the integration of the general adversarial network (GAN) optimizes both central and layer formations in exterior panels. Thus, the suggested technique uses the external noise factor to provide relevant data to the control center via fiber optic shackles. As a result, the normalized error is smaller, boosting the suggested method's effectiveness in all subsurface areas. The created mathematical model is divided into five different situations, and the results are simulated using MATLAB to test the effectiveness of the anticipated strategy. Additionally, comparisons are done for each of the five scenarios, and it is found that the proposed fiber-optic method for energy sources is far more effective than current methodologies.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3