Leaf litter decomposition and detrital communities following the removal of two large dams on the Elwha River (Washington, USA)

Author:

LeRoy Carri J.,Morley Sarah A.,Duda Jeffrey J.,Zinck Alex A.,Lamoureux Paris J.,Pennell Cameron,Bailey Ali,Oswell Caitlyn,Silva Mary,Kamakawiwo’ole Brandy K.,Hartford Sorrel,Van Der Hout Jacqueline,Peters Roger,Mahan Rebecca,Stapleton Justin,Johnson Rachelle C.,Foley Melissa M.

Abstract

Large-scale dam removals provide opportunities to restore river function in the long-term and are massive disturbances to riverine ecosystems in the short-term. The removal of two dams on the Elwha River (WA, USA) between 2011 and 2014 was the largest dam removal project to be completed by that time and has since resulted in major changes to channel dynamics, river substrates, in-stream communities, and the size and shape of the river delta. To assess ecosystem function across the restored Elwha watershed, we compared leaf litter decomposition at twenty sites: 1) four tributary sites not influenced by restoration activities; 2) four river sites downstream of the upper dam (Glines Canyon Dam); 3) four river sites within the footprint of the former Aldwell Reservoir upstream of the lower dam (Elwha Dam); 4) four river sites downstream of the lower dam; and 5) four lentic sites in the newly developing Elwha delta. Three major findings emerged: 1) decomposition rates differed among sections of the Elwha watershed, with slowest decomposition rates at the delta sites and fastest decomposition rates just downstream of the upper dam; 2) aquatic macroinvertebrate communities establishing in leaf litterbags differed significantly among sections of the Elwha watershed; and 3) aquatic fungal communities growing on leaf litter differed significantly among sections. Aquatic macroinvertebrate and fungal diversity were sensitive to differences in canopy cover, water chemistry, and river bottom sediments across sites, with a stronger relationship to elevation for aquatic macroinvertebrates. As the Elwha River undergoes recovery following the massive sediment flows associated with dam removal, we expect to see changes in leaf litter processing dynamics and shifts in litter-dependent decomposer communities (both fungal and invertebrate) involved in this key ecosystem process.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3