Harnessing iNaturalist to quantify hotspots of urban biodiversity: the Los Angeles case study

Author:

Beninde Joscha,Delaney Tatum W.,Gonzalez Germar,Shaffer H. Bradley

Abstract

IntroductionA major goal for conservation planning is the prioritized protection and management of areas that harbor maximal biodiversity. However, such spatial prioritization often suffers from limited data availability, resulting in decisions driven by a handful of iconic or endangered species, with uncertain benefits for co-occurring taxa. We argue that multi-species habitat preferences based on field observations should guide conservation planning to optimize the long-term persistence of as many species as possible.MethodsUsing habitat suitability modeling techniques and data from the community-science platform iNaturalist, we provide a strategy to develop spatially explicit models of habitat suitability that enable better informed, place-based conservation prioritization. Our case study in Greater Los Angeles used Maxent and Random Forests to generate suitability models for 1,200 terrestrial species with at least 25 occurrence records, drawn from plants (45.5%), arthropods (27.45%), vertebrates (22.2%), fungi (3.2%), molluscs (1.3%), and other taxonomic groups (< 0.3%). This modeling strategy further compared spatial thinning and taxonomic bias file corrections to account for the biases inherent to the iNaturalist dataset, modeling species jointly and separately in wildland and urban sub-regions and validated model performance using null models and a “test” dataset of species and occurrences that were not used to train models.ResultsMean models of habitat suitability of all species combined were similar across model settings, but the mean Random Forest model received the highest median AUCROC and AUCPRG scores in model evaluation. Taxonomic groups showed relatively modest differences in their response to the urbanization gradient, while native and non-native species showed contrasting patterns in the most urban and the most wildland habitats and both peaked in mean habitat suitability near the urban-wildland interface.DiscussionOur modeling framework is based entirely on open-source software and our code is provided for further use. Given the increasing availability of urban biodiversity data via platforms such as iNaturalist, this modeling framework can easily be applied to other regions. Quantifying habitat suitability for a large, representative subset of the locally occurring pool of species in this way provides a clear, data-driven basis for further ecological research and conservation decision-making, maximizing the impact of current and future conservation efforts.

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3