Seasonal somatic reserves of a northern ungulate influenced by reproduction and a fire-mediated landscape

Author:

Thompson Daniel P.,Fowler Nicholas L.,Crouse John A.,McDonough Thomas J.,Badajos Oriana H.,Spathelf Miles O.,Watts Dominique E.,Rodman Susanne U.

Abstract

Wildlife contend with seasonal fluctuations in resource availability and have adapted survival and reproductive strategies to overcome resource limitations. Many northern ungulates are adapted to a dynamic nutritional landscape and rely on somatic reserves accumulated during the short growing season. Moose (Alces alces) populations in the boreal forest respond to variation in their nutritional landscapes that quickly change after wildland fires. We tested associations between somatic energy reserves of female moose and a suite of factors relevant to energy demands and nutrient availability after landscape scale wildland fires on the Kenai Peninsula, Alaska. From 2015–2022, we immobilized 97 individual, adult moose (n=163 early winter; n=98 late winter) and collected over 223,000 GPS locations. We evaluated if somatic energy reserves of cow moose were influenced by endogenous or exogenous energy demands, or access to moose forage to accumulate energy reserves. Cows that gave birth and lost their neonate(s) early in the summer had more early winter body fat (14.39% ± 0.24SE) compared with cows that gave birth and the neonate survived to 4-months-old (10.59% ± 0.34SE). Body fat measured in early winter was positively correlated with home ranges of cows during summer with a higher percent cover of aspen forage. Late winter body fat of cow moose was negatively correlated with home ranges with higher percent cover of aspen forage, but positively correlated with home ranges with higher percent cover of willows and shoulder season forages. Our results highlight that a suite of plant species and seral states is needed across the landscape for moose to accumulate and moderate the loss of somatic energy reserves over the year. Furthermore, our results emphasize the importance of shoulder season forages for moose when snow depth is low. Managing the nutritional landscape of the boreal forest through interagency wildland fire management could create a mosaic of seral states that enhances moose forage, while reducing wildland fire hazards along the wildland urban interface and providing ecosystem services.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3