Cooperation With Arbuscular Mycorrhizal Fungi Increases Plant Nutrient Uptake and Improves Defenses Against Insects

Author:

Yu Lu,Zhang Wantong,Geng Yiyi,Liu Kesi,Shao Xinqing

Abstract

Plants have evolved various defense mechanisms to cope with biotic and abiotic stresses. Cooperation with microorganisms, especially arbuscular mycorrhizal fungi (AMF), strengthens the defense capabilities of host plants. To explore the effect of AMF on the growth of Elymus and the defenses against locust feeding, we designed a two-compartment device to connect or cut the mycelia and roots. We used this to investigate communication cues and pathways between donor and receiver plants. We found that AMF significantly increased the nitrogen content and decreased the carbon to nitrogen (C:N) ratio of donor plants and receiver plants and the carbon content of both. After the establishment of the common mycorrhizal network (CMN) with AMF between the two chambers, inoculations of donor plants challenged by locusts caused enhancement in four defense-related enzymes, namely, lipoxygenase, polyphenol oxidase, phenylalanine ammonia lyase, and β-1,3-glucanase, in the receiver plants. The main components of volatile organic compounds emitted by receiver plants were terpenoids. The findings indicated that AMF could not only improve plant growth but also activate the defense response of plants to insect feeding. Four defense enzymes, volatile organic compounds, and carbon and nitrogen content were involved in the defense response, and the mycelial network could act as a conduit to deliver communication signals.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3