Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge

Author:

Adams Emily C.,Parache Helen B.,Cherrington Emil,Ellenburg Walter L.,Mishra Vikalp,Lucey Ronan,Nakalembe Catherine

Abstract

The 2019–2020 Desert Locust (DL) upsurge in East Africa threatened food security for millions in the region. This highlighted the need to track and quantify the damaging impacts of the swarming insects on cropland and rangelands. Satellite Earth observations (EO) data have the potential to contribute to DL damage assessments that can inform control measures, aid distribution and recovery efforts. EO can complement traditional ground based surveys (which are currently further limited due to COVID-19), by rapidly and cost effectively capturing the full spatial scale of the DL upsurge. However, EO-based techniques struggled to accurately quantify damage from this DL upsurge due to the sporadic and localized nature of infestations impacting scale, timing, and anomalous vegetation conditions. This study analyzed time series data from MODIS, the harmonized Landsat Sentinel-2 product, and C-band radar data from Sentinel-1 to distinguish DL damage from normal senescence or other confounding factors from January to June 2020. These data were compared to in situ locust swarm, band, and non locust observations collected by the Food and Agriculture Organization (FAO) and PlantVillage. The methods presented did not produce results that could confidently differentiate senescence from locust activity, and may represent a limitation of publicly available remotely sensed data to detect DL damage. However, the higher spatial resolution data sets showed promise, and there is potential to explore commercially available satellite products such as Planet Labs for damage assessment protocols.

Funder

National Aeronautics and Space Administration

Publisher

Frontiers Media SA

Reference38 articles.

1. The senegalese grasshopper Oedaleus senegalensis Krauss;Batten;J. Appl. Ecol,1969

2. Complementing optical remote sensing with synthetic aperture radar observations of hail damage swaths to agricultural crops in the central United States;Bell;J. Appl. Meteorol. Climatol,2020

3. Automatic detection of vegetation changes in the southwestern united states using remotely sensed images;Chavez;Method Hotogramm. Eng. Remote Sens,1994

4. The harmonized landsat and sentinel-2 surface reflectance data set;Claverie;Remote Sens. Environ,2018

5. Spatial Scales of desert locust gregarization;Collett;Proc. Natl Acad. Sci.,1998

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3