Cascading impacts of a climate-driven ecosystem transition intensifies population vulnerabilities and fishery collapse

Author:

Rogers-Bennett Laura,Catton Cynthia A.

Abstract

The recent large-scale intensification of marine heatwaves, and other climate-related stressors, has dramatically impacted biogenic habitats around the globe, including marine ecosystems such as coral reefs, seagrasses, and kelp forests. While the impacts to foundation species may be of particular concern, these ecological catastrophes underscore the need to examine how whole systems respond to a suite of stressors. The recent climate-driven collapse of the bull kelp forest and recreational red abalone fishery in northern California provides an example of unanticipated ripple and lagged effects in the system, intensifying vulnerabilities and accelerating population and fishery collapse. For this case study, we examined 15 years (2003–2018) of biological survey data on the bull kelp forest ecosystem—before, during, and after an extreme climate event. We document the interactions and complexity of impacts over time, as well as the resulting increased vulnerability of red abalone to additional anthropogenic, biological, and environmental stressors. We observed progressively stronger population-level responses of the red abalone to the marine heatwave and the regional loss of kelp, driving the movement of adults and juveniles in search of food. As food remained scarce, we documented the loss of productivity with diminished gonad and body condition, the absence of larval or newly-settled abalone, mass mortalities, and shoreward shifts in depth distributions. With 40% of the population dead or dying, juvenile and trophy-sized abalone abandoning cryptic habitats, the shift in the distribution to shallower depths increased the vulnerability of red abalone to the fishery. Other anthropogenic, biological, and climate-related stressors that disproportionately impact shallow habitats are now a growing concern for the survivors. For red abalone, previously unanticipated cascading risks include increased wave energy, warming air temperatures, freshwater flooding, landslides, as well as possible oil spills and harmful algal blooms. Climate-driven changes in vulnerability to fishing and environmental stressors present significant challenges for sustainable natural resource management in dynamic stressed systems, and underscore the need for continued system-focused monitoring. We present a conceptual framework supporting similar ecosystem investigations of recent and future climate impacts to inform adaptive ecosystem-based management strategies.

Publisher

Frontiers Media SA

Subject

Management, Monitoring, Policy and Law,Atmospheric Science,Pollution,Environmental Science (miscellaneous),Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3