A Fate Worse Than Warming? Stratospheric Aerosol Injection and Global Catastrophic Risk

Author:

Tang Aaron,Kemp Luke

Abstract

Injecting particles into atmosphere to reflect sunlight, stratospheric aerosol injection (SAI), represents a potential technological solution to the threat of climate change. But could the cure be worse than the disease? Understanding low probability, yet plausible, high-impact cases is critical to prudent climate risk management and SAI deliberation. But analyses of such high impact outcomes are lacking in SAI research. This paper helps resolve this gap by investigating SAI's contributions to global catastrophic risk. We split SAI's contributions to catastrophic risk into four interrelated dimensions:1. Acting as a direct catastrophic risk through potentially unforeseen ecological blowback.2. Interacting with other globally catastrophic hazards like nuclear war.3. Exacerbating systemic risk (risks that cascade and amplify across different systems);4. Acting as a latent risk (risk that is dormant but can later be triggered).The potential for major unforeseen environmental consequences seems highly unlikely but is ultimately unknown. SAI plausibly interacts with other catastrophic calamities, most notably by potentially exacerbating the impacts of nuclear war or an extreme space weather event. SAI could contribute to systemic risk by introducing stressors into critical systems such as agriculture. SAI's systemic stressors, and risks of systemic cascades and synchronous failures, are highly understudied. SAI deployment more tightly couples different ecological, economic, and political systems. This creates a precarious condition of latent risk, the largest cause for concern. Thicker SAI masking extreme warming could create a planetary Sword of Damocles. That is, if SAI were removed but underlying greenhouse gas concentrations not reduced, there would be extreme warming in a very short timeframe. Sufficiently large global shocks could force SAI termination and trigger SAI's latent risk, compounding disasters and catastrophic risks. Across all these dimensions, the specific SAI deployment, and associated governance, is critical. A well-coordinated use of a small amount of SAI would incur negligible risks, but this is an optimistic scenario. Conversely, larger use of SAI used in an uncoordinated manner poses many potential dangers. We cannot equivocally determine whether SAI will be worse than warming. For now, a heavy reliance on SAI seems an imprudent policy response.

Publisher

Frontiers Media SA

Reference159 articles.

1. Solar geoengineering may lead to excessive cooling and high strategic uncertainty;Abatayo;Proc. Nat. Acad. Sci. U.S.A.,2020

2. Radiation dose to the global flying population;Alvarez;J. Radiol. Protect.,2016

3. Classifying global catastrophic risks;Avin;Futures,2018

4. Problems with geoengineering schemes to combat climate change4148 BalaG. Curr. Sci.962009

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3