Analysis of porcine bone marrow-derived macrophage cytokine responses to infection with PRRSV-1 strains of differing virulence

Author:

Jackson Ben,Chrun Tiphany,Childs Kay,Wanasen Nanchaya,Frossard Jean-Pierre,Graham Simon P.,Seago Julian

Abstract

Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) causes huge economic losses to the European pig industry. PRRSV-1 is divided into 3 subtypes and exhibits considerable antigenic heterogeneity. Due to its high mutation rate, PRRSV-1 is constantly evolving, and highly virulent, particularly subtype 3 strains, are continually emerging. The mechanism(s) underlying PRRSV-1 virulence have not been fully elucidated. In vivo studies have implicated replication kinetics, cell tropism and an enhanced pro-inflammatory cytokine response as potential contributing factors. However, few strains have been directly compared and differences in in vivo study design have hindered comparison, thus limiting our understanding of PRRSV-1 virulence. To address this knowledge gap, we sought to develop a reverse genetics and ex vivo model system, to attempt to identify correlates of PRRSV-1 virulence and attenuation in vitro. Herein we describe the use of primary porcine bone marrow-derived macrophages (BMDM) to investigate the growth kinetics and induced cytokine profiles of the highly virulent SU1-Bel strain, the low virulence 215-06 strain and the attenuated Olot/91 strain. We show that infection of BMDM with virulent PRRSV-1 strains induced higher expression of IL-6 and IL-8 and lower expression of TNF-α when compared with the attenuated strain. In addition, BMDM infected with SU1-Bel secreted significantly more IFN-α than those infected with PRRSV-1 strains of lower virulence. Interestingly, despite inducing less IFN-α than SU1-Bel, Olot/91 induced much higher levels of expression of several interferon-stimulated genes (ISGs), suggesting that Olot/91 may be less able to counteract type I IFN signaling which may contribute to its attenuated phenotype.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Frontiers Media SA

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3