Net cleaning impacts Atlantic salmon gill health through microbiome dysbiosis

Author:

Elsheshtawy Ahmed,Clokie Benjamin Gregory James,Albalat Amaya,Nylund Are,Isaksen Trond Einar,Napsøy Indrebø Elisabeth,Andersen Linda,Moore Lindsey Jane,MacKenzie Simon

Abstract

IntroductionNet biofouling has a significant impact for the global salmon industry in the seawater grow-out stage in terms of its management. Current mitigation strategies occur primarily through the regular removal of biofouling using in situ cleaning. While in situ net cleaning is effective there is uncertainty as to whether the equipment or dispersed material has an impact upon the fish in the cages. Through direct contact with the environment, the significant surface area of the gill including its microbiome is directly exposed to the acute environmental changes generated by net cleaning. This study aimed to provide a detailed understanding of the impact of in situ net cleaning on Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) gill health.MethodsThree field trials were conducted on commercial fish farms in western Norway. Fouling organisms on net pens and flushed particles during in situ cleaning were identified and screened for major fish pathogens. Hydrographic profile measurements were performed to measure the impact on water quality. Gill samples were examined for histopathological changes, immune gene expression, and the prevalence of major pathogens. 16S rRNA amplicon sequencing was employed to explore the impact of net cleaning on gill microbiome.Results and discussionData obtained from these trials identified a diversity of fouling species including hydroids, algae, skeleton shrimps, and filter feeders on net pens, a direct impact on measured water quality indicators, a moderate change in gill inflammatory and antigen presentation activity at the level of mRNA, and a large significant change in gill microbiome. Observed changes in gill microbial community involved a decrease in bacterial richness coupled to an increase in identified bacterial genera related to negative health consequences. Parallel analyses for pathogens load in biofouling organisms and flushed particles highlighted the presence of several fish bacteria and parasites. However, minor changes were detected in salmon gill pathogen diversity and loading. Our results suggest that biofouling organisms may act as transient reservoirs for some fish pathogens but not viruses and that gill microbial dysbiosis could be related to the host stress response during and post net cleaning.

Publisher

Frontiers Media SA

Reference81 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3