Velocity-aware spatial-temporal attention LSTM model for inverse dynamic model learning of manipulators

Author:

Huang Wenhui,Lin Yunhan,Liu Mingxin,Min Huasong

Abstract

IntroductionAn accurate inverse dynamics model of manipulators can be effectively learned using neural networks. However, further research is required to investigate the impact of spatiotemporal variations in manipulator motion sequences on network learning. In this work, the Velocity Aware Spatial-Temporal Attention Residual LSTM neural network (VA-STA-ResLSTM) is proposed to learn a more accurate inverse dynamics model, which uses a velocity-aware spatial-temporal attention mechanism to extract dynamic spatiotemporal features selectively from the motion sequence of the serial manipulator.MethodsThe multi-layer perception (MLP) attention mechanism is adopted to capture the correlation between joint position and velocity in the motion sequence, and the state correlation between hidden units in the LSTM network to reduce the weight of invalid features. A velocity-aware state fusion approach of LSTM network hidden units' states is proposed, which utilizes variation in joint velocity to adapt to the temporal characteristics of the manipulator dynamic motion, improving the generalization and accuracy of the neural network.ResultsComparative experiments have been conducted on two open datasets and a self-built dataset. Specifically, the proposed method achieved an average accuracy improvement of 61.88% and 43.93% on the two different open datasets and 71.13% on the self-built dataset compared to the LSTM network. These results demonstrate a significant advancement in accuracy for the proposed method.DiscussionCompared with the state-of-the-art inverse dynamics model learning methods of manipulators, the modeling accuracy of the proposed method in this paper is higher by an average of 10%. Finally, by visualizing attention weights to explain the training procedure, it was found that dynamic modeling only relies on partial features, which is meaningful for future optimization of inverse dynamic model learning methods.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3