Abstract
In swimming, the posture and technique of athletes are crucial for improving performance. However, traditional swimming coaches often struggle to capture and analyze athletes' movements in real-time, which limits the effectiveness of coaching. Therefore, this paper proposes RL-CWtrans Net: a robot vision-driven multimodal swimming training system that provides precise and real-time guidance and feedback to swimmers. The system utilizes the Swin-Transformer as a computer vision model to effectively extract the motion and posture features of swimmers. Additionally, with the help of the CLIP model, the system can understand natural language instructions and descriptions related to swimming. By integrating visual and textual features, the system achieves a more comprehensive and accurate information representation. Finally, by employing reinforcement learning to train an intelligent agent, the system can provide personalized guidance and feedback based on multimodal inputs. Experimental results demonstrate significant advancements in accuracy and practicality for this multimodal robot swimming coaching system. The system is capable of capturing real-time movements and providing immediate feedback, thereby enhancing the effectiveness of swimming instruction. This technology holds promise.