RL-CWtrans Net: multimodal swimming coaching driven via robot vision

Author:

Wang Guanlin

Abstract

In swimming, the posture and technique of athletes are crucial for improving performance. However, traditional swimming coaches often struggle to capture and analyze athletes' movements in real-time, which limits the effectiveness of coaching. Therefore, this paper proposes RL-CWtrans Net: a robot vision-driven multimodal swimming training system that provides precise and real-time guidance and feedback to swimmers. The system utilizes the Swin-Transformer as a computer vision model to effectively extract the motion and posture features of swimmers. Additionally, with the help of the CLIP model, the system can understand natural language instructions and descriptions related to swimming. By integrating visual and textual features, the system achieves a more comprehensive and accurate information representation. Finally, by employing reinforcement learning to train an intelligent agent, the system can provide personalized guidance and feedback based on multimodal inputs. Experimental results demonstrate significant advancements in accuracy and practicality for this multimodal robot swimming coaching system. The system is capable of capturing real-time movements and providing immediate feedback, thereby enhancing the effectiveness of swimming instruction. This technology holds promise.

Publisher

Frontiers Media SA

Reference38 articles.

1. “Distilling knowledge from cnn-transformer models for enhanced human action recognition,”;Ahmadabadi,2023

2. “Lightweight cnn and gru network for real-time action recognition,”;Ahmed,2022

3. Skeleton-based human action recognition via convolutional neural networks (CNN);Ali;arXiv preprint arXiv:2301.13360,2023

4. Aquaclimber: a limbed swimming and climbing robot based on reduced order models;Austin;Bioinspir. Biomimet,2022

5. Fuzzy integral-based cnn classifier fusion for 3d skeleton action recognition;Banerjee;IEEE Trans. Circ. Syst. Video Technol,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3