Embodied Object Representation Learning and Recognition

Author:

Van de Maele Toon,Verbelen Tim,Çatal Ozan,Dhoedt Bart

Abstract

Scene understanding and decomposition is a crucial challenge for intelligent systems, whether it is for object manipulation, navigation, or any other task. Although current machine and deep learning approaches for object detection and classification obtain high accuracy, they typically do not leverage interaction with the world and are limited to a set of objects seen during training. Humans on the other hand learn to recognize and classify different objects by actively engaging with them on first encounter. Moreover, recent theories in neuroscience suggest that cortical columns in the neocortex play an important role in this process, by building predictive models about objects in their reference frame. In this article, we present an enactive embodied agent that implements such a generative model for object interaction. For each object category, our system instantiates a deep neural network, called Cortical Column Network (CCN), that represents the object in its own reference frame by learning a generative model that predicts the expected transform in pixel space, given an action. The model parameters are optimized through the active inference paradigm, i.e., the minimization of variational free energy. When provided with a visual observation, an ensemble of CCNs each vote on their belief of observing that specific object category, yielding a potential object classification. In case the likelihood on the selected category is too low, the object is detected as an unknown category, and the agent has the ability to instantiate a novel CCN for this category. We validate our system in an simulated environment, where it needs to learn to discern multiple objects from the YCB dataset. We show that classification accuracy improves as an embodied agent can gather more evidence, and that it is able to learn about novel, previously unseen objects. Finally, we show that an agent driven through active inference can choose their actions to reach a preferred observation.

Funder

Agentschap Innoveren en Ondernemen

Fonds Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Biomedical Engineering

Reference69 articles.

1. MONet: unsupervised scene decomposition and representation;Burgess;arXiv [Preprint] arXiv,2019

2. The ycb object and model set: towards common benchmarks for manipulation research;Calli,2015

3. Learning generative state space models for active inference;Çatal;Front. Comput. Neurosci.

4. Learning generative state space models for active inference;Çatal;Front. Comput. Neurosci.

5. ChenC. DengF. AhnS. ROOTS: object-centric representation and rendering of 3D scenes2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3