Real-time recommendations for energy-efficient appliance usage in households

Author:

Eirinaki Magdalini,Varlamis Iraklis,Dahihande Janhavi,Jaiswal Akshay,Pagar Akshay Anil,Thakare Ajinkya

Abstract

According to several studies, the most influencing factor in a household's energy consumption is user behavior. Changing user behavior to improve energy usage leads to efficient energy consumption, saving money for the consumer and being more friendly for the environment. In this work we propose a framework that aims at assisting households in improving their energy usage by providing real-time recommendations for efficient appliance use. The framework allows for the creation of household-specific and appliance-specific energy consumption profiles by analyzing appliance usage patterns. Based on the household profile and the actual electricity use, real-time recommendations notify users on the appliances that can be switched off in order to reduce consumption. For instance, if a consumer forgets their A/C on at a time that it is usually off (e.g., when there is no one at home), the system will detect this as an outlier and notify the consumer. In the ideal scenario, a household has a smart meter monitoring system installed, that records energy consumption at the appliance level. This is also reflected in the datasets available for evaluating such systems. However, in the general case, the household may only have one main meter reading. In this case, non-intrusive load monitoring (NILM) techniques, which monitor a house's energy consumption using only one meter, and data mining algorithms that disaggregate the consumption into appliance level, can be employed. In this paper, we propose an end-to-end solution to this problem, starting with the energy disaggregation process, and the creation of user profiles that are then fed to the pattern mining and recommendation process, that through an intuitive UI allows users to further refine their energy consumption preferences and set goals. We employ the UK-DALE (UK Domestic Appliance-Level Electricity) dataset for our experimental evaluations and the proof-of-concept implementation. The results show that the proposed framework accurately captures the energy consumption profiles of each household and thus the generated recommendations are matching the actual household energy habits and can help reduce their energy consumption by 2–17%.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3