A solution and practice for combining multi-source heterogeneous data to construct enterprise knowledge graph

Author:

Yan Chenwei,Fang Xinyue,Huang Xiaotong,Guo Chenyi,Wu Ji

Abstract

The knowledge graph is one of the essential infrastructures of artificial intelligence. It is a challenge for knowledge engineering to construct a high-quality domain knowledge graph for multi-source heterogeneous data. We propose a complete process framework for constructing a knowledge graph that combines structured data and unstructured data, which includes data processing, information extraction, knowledge fusion, data storage, and update strategies, aiming to improve the quality of the knowledge graph and extend its life cycle. Specifically, we take the construction process of an enterprise knowledge graph as an example and integrate enterprise register information, litigation-related information, and enterprise announcement information to enrich the enterprise knowledge graph. For the unstructured text, we improve existing model to extract triples and the F1-score of our model reached 72.77%. The number of nodes and edges in our constructed enterprise knowledge graph reaches 1,430,000 and 3,170,000, respectively. Furthermore, for each type of multi-source heterogeneous data, we apply corresponding methods and strategies for information extraction and data storage and carry out a detailed comparative analysis of graph databases. From the perspective of practical use, the informative enterprise knowledge graph and its timely update can serve many actual business needs. Our proposed enterprise knowledge graph has been deployed in HuaRong RongTong (Beijing) Technology Co., Ltd. and is used by the staff as a powerful tool for corporate due diligence. The key features are reported and analyzed in the case study. Overall, this paper provides an easy-to-follow solution and practice for domain knowledge graph construction, as well as demonstrating its application in corporate due diligence.

Publisher

Frontiers Media SA

Subject

Artificial Intelligence,Information Systems,Computer Science (miscellaneous)

Reference38 articles.

1. Shaping graph pattern mining for financial risk;Bernardete;Neurocomputing,2019

2. Dbpedia - a crystallization point for the web of data;Bizer;J. Web Semant,2009

3. “Freebase: a shared database of structured general human knowledgem,”;Bollacker,2007

4. Proving the correctness of knowledge graph update: a scenario from surveillance of adverse childhood experiences;Brenas;Front. Big Data,2021

5. Construction and application of enterprise risk knowledge graph;Chen;Comp. Sci,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Source Feature-Fusion Method for the Seismic Data of Cultural Relics Based on Deep Learning;Sensors;2024-07-12

2. Multi-Source Heterogeneous Data Cell Information Processing Model;2024 6th International Conference on Communications, Information System and Computer Engineering (CISCE);2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3