Amelioration of Saline Stress on Chia (Salvia hispanica L.) Seedlings Inoculated With Halotolerant Plant Growth-Promoting Bacteria Isolated From Hypersaline Environments

Author:

Yañez-Yazlle María Florencia,Romano-Armada Neli,Rajal Verónica Beatriz,Irazusta Verónica Patricia

Abstract

The rhizosphere and microbiome of halotolerant plants could be crucial for alleviating salinity stress during plant growth. The aims of this work were (1) to isolate bacteria from rhizosphere and bulk soil samples from the Salar del Hombre Muerto (Catamarca, Argentina), (2) to characterize different plant growth-promoting (PGP) activities produced by these bacterial isolates, and (3) to evaluate their effect on the initial growth of chia (Salvia hispanica L.) under saline stress. A total of 667 microorganisms were isolated, using different culture media with NaCl, and their abilities for nitrogen fixation, phosphate solubilization, siderophores production, and indole-3-acetic acid production were evaluated. Thirteen strains were selected for showing all the tested PGP activities; they belonged to the genera Kushneria, Halomonass, Pseudomonas, Planomicrobium, and Pseudarthrobacter. The strains Kushneria sp. and Halomonas sp. showed the highest salinity tolerance (from 50 to 2,000 mM NaCl) and biomass and biofilm production. Chia seeds were treated with six of the first 13 selected strains to evaluate their plant growth-promoting effect under saline stress (without and with 50 and 100 mM NaCl). Halomonas sp. 3R.12 and Kushneria sp. T3.7 produced heavier seedlings with a balanced shoot/root length ratio, while Pseudomonas sp. AN23 showed the best effect upon chia seedlings, with a morphological response similar to non-stressed seedlings. On the other hand, seedlings displayed no responses when inoculated with Planomicrobium sp. 3S.31 and Pseudarthrobacter sp. ER25. This study contributes to the knowledge on microorganisms from hypersaline environments as plant growth promoters for their use in the production of salt-sensitive crops, among other potential uses.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3