Approach for machine learning based design of experiments for occupant simulation

Author:

Schneider Bernd,Kofler Desiree,D'Addetta Gian Antonio,Freienstein Heiko,Wolkenstein Maja,Klug Corina

Abstract

The complexity of crash scenarios in the context of vehicle safety is steadily increasing. This is especially the case on the way to mixed traffic challenges with non-automated and automated driving vehicles. The number of simulations required to design a robust restraint system is thus also increasing. The vast range of possible scenarios here is causing a huge parameter space. Simultaneously biofidelic simulation models are resulting in very high computational costs and therefore the number of simulations should be limited to a feasible operational range. In this study, a machine-learning based design of experiments algorithm is developed, which specifically addresses the issues when designing a safety system with a limited number of simulation samples taking diversity of the occupant and accident scenario into account. In contrast to an optimization task, where the aim is to meet a target function, our job has been to find the critical load case combinations to make sure that these are addressed and not missed. A combination of a space-filling approach and a metamodel has been established to find the critical scenarios in order to improve the system for those cases. It focuses specifically on the areas that are difficult to predict by the metamodel. The developed method was applied to iteratively generate a simulation matrix of a total of 208 simulations with a generic interior model and a detailed FE human body model. Kinematic and strain-based injury metrics were used as simulation output. These were used to train the metamodels after each iteration and derive the simulation matrix for the next iteration. In this paper we present a method that allows the training of a robust metamodel for the prediction of injury criteria, considering both varying load cases and varying restraint system parameters for individual anthropometries and seating postures. Based on that, restraint systems or metamodels can be optimized to achieve the best overall performance for a huge variety of possible scenarios with a specific focus on critical scenarios.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference30 articles.

1. Identification of occupant posture using a Bayesian classification methodology to reduce the risk of injury in a collision;Adam;Transp. Res. Part C Emerg. Technol.,2011

2. A framework for rapid on-board deterministic estimation of occupant injury risk in motor vehicle crashes with quantitative uncertainty evaluation;Bance;Sci. China Technol. Sci.,2021

3. Random forests;Breiman;Mach. Learn.,2001

4. Space-filling sequential design strategies for adaptive surrogate modelling;Crombecq,2009

5. Noncollapsing space-filling designs for bounded nonrectangular regions;Draguljić;Technometrics,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3