Dynamic phasor measurement algorithm based on high-precision time synchronization

Author:

Zhang Jie,Li Fuxin,Chang Zhengwei,Hu Chunhua,Liu Chun,Tang Sihao

Abstract

Ensuring the swift and precise tracking of power system signal parameters, especially the frequency, is imperative for the secure and stable operation of power grids. In instances of faults within the distribution network, abrupt changes in frequency may occur, presenting a challenge for existing algorithms that struggle to effectively track such signal variations. Addressing the need for enhanced performance in the face of frequency mutations, this paper introduces an innovative approach—the Covariance Reconstruction Extended Kalman Filter (CREKF) algorithm. Initially, the dynamic signal model of electric power is meticulously analyzed, establishing a dynamic signal relationship based on high-precision time source sampling tailored to the signal model’s characteristics. Subsequently, the filter gain, covariance matrix, and variance iteration equation are determined based on the signal relationship among three sampling points. In a final step, recognizing the impact of the covariance matrix on algorithmic tracking ability, the paper proposes a covariance matrix reset mechanism utilizing hysteresis induced by output errors. Through extensive verification with simulated signals, the results conclusively demonstrate that the CREKF algorithm exhibits superior measurement accuracy and accelerated tracking speed when confronted with mutating signals.

Publisher

Frontiers Media SA

Reference23 articles.

1. Power system dynamic state estimation with synchronized phasor measurements;Aminifar;IEEE Trans. Instrum. Meas.,2013

2. Phasor estimation for grid power monitoring: least square vs linear kalman filter;Amirat;Energies,2020

3. Kalman filtering with harmonics whitening for p class phasor measurement units;Bashian,2021

4. A review on synchrophasor technology for power system monitoring;bin Mohd Nasir,2019

5. Dynamic phasor and frequency estimation of time-varying power system signals;Dash;Int. J. Electr. Power and Energy Syst.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3