Neuromodulation to guide circuit reorganization with regenerative therapies in upper extremity rehabilitation following cervical spinal cord injury

Author:

Balbinot Gustavo

Abstract

Spinal cord injury (SCI) is a profoundly debilitating condition with no effective treatment to date. The complex response of the central nervous system (CNS) to injury and its limited regeneration capacity pose bold challenges for restoring function. Cervical SCIs are the most prevalent and regaining hand function is a top priority for individuals living with cervical SCI. A promising avenue for addressing this challenge arises from the emerging field of regenerative rehabilitation, which combines regenerative biology with physical medicine approaches. The hypothesis for optimizing gains in upper extremity function centers on the integration of targeted neurorehabilitation with novel cell- and stem cell-based therapies. However, the precise roles and synergistic effects of these components remain poorly understood, given the intricate nature of SCI and the diversity of regenerative approaches. This perspective article sheds light on the current state of regenerative rehabilitation for cervical SCI. Notably, preclinical research has yet to fully incorporate rehabilitation protocols that mimic current clinical practices, which often rely on neuromodulation strategies to activate spared circuits below the injury level. Therefore, it becomes imperative to comprehensively investigate the combined effects of neuromodulation and regenerative medicine strategies in animal models before translating these therapies to individuals with SCI. In cases of severe upper extremity paralysis, the advent of neuromodulation strategies, such as corticospinal tract (CST) and spinal cord stimulation, holds promise as the next frontier in enhancing the effectiveness of cell- and stem cell-based therapies. Future preclinical studies should explore this convergence of neuromodulation and regenerative approaches to unlock new possibilities for upper extremity treatment after SCI.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3