Failure behavior and mechanical properties of prefabricated cantilever retaining under dynamic effect

Author:

Du Yihan,Du Xuze,Han Wei,Huang Bo,Huang Songtao,Liang Peng,Zhang Mo

Abstract

Prefabricated retaining wall is in line with the development trend of greening and environmental protection of civil engineering, and has a broad application prospect. However, the seismic response of prefabricated retaining wall has not been systematically revealed. Therefore, in this study, a simple fabricated cantilever retaining wall with connecting plate was proposed, and the mechanical properties of prefabricated cantilever retaining under dynamic effect was investigated by the experimental and numerical methods. At first, the physical model experiments of prefabricated cantilever retaining with different vertical plate thicknesses were carried out. Subsequently, the mechanical properties of the prefabricated cantilever retaining were investigated. The research results show that the thickness of retaining wall significantly affects the failure pattern, the larger the thickness, the more complete the broken pattern. In addition, the connection between the vertical plate and the bottom plate is prone to cracks induced by stress concentration, eventually leading to damage. As the thickness of the vertical plate increases, the top stress of the vertical plate decreases but the bottom stress increases. The greater the embedded depth of the vertical plate, the larger the stress at bottom of the vertical plate. Furthermore, the effect of concrete strength on mechanical properties is not obvious. This study provides an idea for the dynamic response research of prefabricated retaining structure.

Publisher

Frontiers Media SA

Reference27 articles.

1. A finite element performance-based approach to correlate movement of a rigid retaining wall with seismic earth pressure;Bakr;Soil Dyn. Earthq. Eng.,2018

2. Seismic response and dynamic stability analysis of soil slopes;Bo;Earthq. Eng. Eng. Vib.,2001

3. Earth pressure on precast panel retaining wall;Coyle;J. Geotechnical Eng. Div.,1976

4. Effect of continuous heavy rainfall on the earth pressure of finite soil;Du;Sci. Technol. Eng.,2022

5. Seismic active earth pressure behind the inclined retaining wall for inclined c-ϕ soil backfill;Gupta;J. Seismol. Earthq. Eng.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3