Evaluating solar and wind electricity production in the Kingdom of Bahrain to combat climate change

Author:

Alnaser N. W.,Alnaser W. E.,Al-Kaabi E. A. D.

Abstract

Recently, the Kingdom of Bahrain doubled its renewable energy (RE) target to achieve 20% of energy mix by 2035 instead of 10%. Two RE sources are candidates among others, i.e., solar and wind energy. Both of these sources require, relatively, large spaces, and both are subject to fluctuation throughout the day, month, and year. Therefore, a thorough experimental evaluation of these two sources is necessary as theoretical assessment has been extensively made. Therefore, we are analyzing the result of two prototypes, solar and wind RE systems installed by the government. The first system includes installing two wind turbines (WT1 and WT2), each rated at 850 kW, and the second system is a 1 MW solar PV system. The annual result for 2022 is recorded for the wind turbine along with the results of 2 years (2017 and 2018) for the solar PV. The annual average produced by the first turbine (WT1), in the front, was found to be 899 MWh, while the second (WT2), at the back, was 872 MWh with an average capacity factor of 12%. Meanwhile, the 1 MW solar PV produced 1,632 MWh in 2017 and 1,497 MWh in 2018. Our analysis shows that each kW of wind turbine yields 2.9 kWh per day while each kW solar PV electricity yields, in average, 4.3 kWh per day. We also found that the average cost of wind electricity unit is 49 fils/kWh (USD¢ 13/kWh) and the payback is nearly 40 years while the average cost of solar electricity unit is 17 fils/kWh (USD ¢ 4.5/kWh) and the payback is nearly 12 years. Furthermore, we found that 1 MW of solar PV gives more electricity than 1 MW of wind by 42% and, subsequently, alleviates more CO2 by 42% than wind turbines’ installation; i.e., 1 MW solar PV will annually produce 1,500 MWh (alleviating 654 tons of CO2), while 1 MW produces, annually, 1057 MWh (alleviating 461 tons of CO2).

Publisher

Frontiers Media SA

Subject

Urban Studies,Building and Construction,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3