Author:
Hanandeh Shadi,Hanandeh Ahmad,Alhiary Mohammad,Al Twaiqat Mohammad
Abstract
The pavement management system is recognized as an assertive discipline that works on pavement indices to predict the pavement performance condition. This study used soft computing methods such as genetic algorithms and artificial intelligence to propose a modern generation of pavement indices for road networks in Jordan. The datasets used in this study were collected from multiple roads in Jordan, and 128 data points were used in this study. The input variables are the pavement condition index (PCI) and the international roughness index (IRI) in the artificial neural network (ANN) and gene expression programming (GEP) models. The output variable is the pavement serviceability rate (PSR). The results show an efficient performance benefit of using these techniques. In addition, the ANN and GEP models were able to predict the output variable with a reasonable accuracy, where the ANN model has an R2 value of 0.95, 0.87, and 0.98 for the PCI, IRI, and PSR, respectively. The (R2) values of the GEP model are 0.94, 0.89, and 0.99 for PCI, IRI, and PSR, respectively.
Subject
Urban Studies,Building and Construction,Geography, Planning and Development
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献