PdPANA: phagemid display as peptide array for neutralizing antibodies, an engineered in silico vaccine candidate against COVID-19

Author:

Uzcátegui Javier,Mullah Khaleel,Buvat de Virgini Daniel,Mendoza Andrés,Urdaneta Rafael,Naranjo Alejandra

Abstract

The COVID-19 pandemic has tested the technical, scientific, and industrial resources of all countries worldwide. Faced with the absence of pharmacological strategies against the disease, an effective plan for vaccinating against SARS-CoV-2 has been essential. Due to the lack of production means and necessary infrastructure, only a few nations could adequately confront this pathogen with a production, storage, and distribution scheme in place. This disease has become endemic in many countries, especially in those that are developing, thus necessitating solutions tailored to their reality. In this paper, we propose an in silico method to guide the design towards a thermally stable, universal, efficient, and safe COVID-19 vaccine candidate against SARS-CoV-2 using bioinformatics, immunoinformatics, and molecular modeling approaches for the selection of antigens with higher immunogenic potential, incorporating them into the surface of the M13 phage. Our work focused on using phagemid display as peptide array for neutralizing antibodies (PdPANA). This alternative approach might be useful during the vaccine development process, since it could bring improvements in terms of cost-effectiveness in production, durability, and ease of distribution of the vaccine under less stringent thermal conditions compared to existing methods. Our results suggest that in the heavily glycosylated region of SARS-CoV-2 Spike protein (aa 344–583), from its inter-glycosylated regions, useful antigenic peptides can be obtained to be used in M13 phagemid display system. PdPANA, our proposed method might be useful to overcome the classic shortcoming posed by the phage-display technique (i.e., the time-consuming task of in vitro screening through great sized libraries with non-useful recombinant proteins) and obtain the most ideal recombinant proteins for vaccine design purposes.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3