Understanding multimorbidity requires sign-disease networks and higher-order interactions, a perspective

Author:

Hourican Cillian,Peeters Geeske,Melis René J.F.,Wezeman Sandra L.,Gill Thomas M.,Olde Rikkert Marcel G.M.,Quax Rick

Abstract

Background: Count scores, disease clustering, and pairwise associations between diseases remain ubiquitous in multimorbidity research despite two major shortcomings: they yield no insight into plausible mechanisms underlying multimorbidity, and they ignore higher-order interactions such as effect modification.Objectives: We argue that two components are currently missing but vital to develop novel multimorbidity metrics. Firstly, networks should be constructed which consists simultaneously of signs, symptoms, and diseases, since only then could they yield insight into plausible shared biological mechanisms underlying diseases. Secondly, learning pairwise associations is insufficient to fully characterize the correlations in a system. That is, synergistic (e.g., cooperative or antagonistic) effects are widespread in complex systems, where two or more elements combined give a larger or smaller effect than the sum of their individual effects. It can even occur that pairs of symptoms have no pairwise associations whatsoever, but in combination have a significant association. Therefore, higher-order interactions should be included in networks used to study multimorbidity, resulting in so-called hypergraphs.Methods: We illustrate our argument using a synthetic Bayesian Network model of symptoms, signs and diseases, composed of pairwise and higher-order interactions. We simulate network interventions on both individual and population levels and compare the ground-truth outcomes with the predictions from pairwise associations.Conclusion: We find that, when judged purely from the pairwise associations, interventions can have unexpected “side-effects” or the most opportune intervention could be missed. The hypergraph uncovers links missed in pairwise networks, giving a more complete overview of sign and disease associations.

Funder

ZonMw

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3