DNMT1 downregulation as well as its overexpression distinctly affect mostly overlapping genes implicated in schizophrenia, autism spectrum, epilepsy, and bipolar disorders

Author:

Singh Minali,Saxena Sonal,Mohan Kommu Naga

Abstract

Data on schizophrenia (SZ), epilepsy (EPD) and bipolar disorders (BPD) suggested an association of DNMT1 overexpression whereas certain variants of the gene were predicted to result in its increased expression in autism spectrum disorder (ASD). In addition, loss of DNMT1 in frontal cortex resulted in behavioral abnormalities in mice. Here we investigated the effects of increased as well as lack of DNMT1 expression using Dnmt1tet/tet neurons as a model for abnormal neurogenesis and 10,861 genes showing transcript level dysregulation in datasets from the four disorders. In case of overexpression, 3,211 (∼ 30%) genes were dysregulated, affecting pathways involved in neurogenesis, semaphorin signaling, ephrin receptor activity, etc. A disproportionately higher proportion of dysregulated genes were associated with epilepsy. When transcriptome data of Dnmt1tet/tet neurons treated with doxycycline that downregulated DNMT1 was used, 3,356 genes (∼31%) were dysregulated with a significant proportion involved in pathways similar to those in untreated cells. Both conditions resulted in ∼68% of dysregulated genes wherein a majority showed similar patterns of transcript level changes. Among the genes with transcripts returning to normal levels, ribosome assembly/biogenesis was most significant whereas in absence of DNMT1, a new set of 903 genes became dysregulated and are involved in similar pathways as mentioned above. These findings provide support for overexpression of DNMT1 as well as its downregulation as risk factor for the four disorders and that its levels within a tight range are essential for normal neurodevelopment/mental health.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Molecular Biology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3