Dense attention network identifies EEG abnormalities during working memory performance of patients with schizophrenia

Author:

Perellón-Alfonso Ruben,Oblak Aleš,Kuclar Matija,Škrlj Blaž,Pileckyte Indre,Škodlar Borut,Pregelj Peter,Abellaneda-Pérez Kilian,Bartrés-Faz David,Repovš Grega,Bon Jurij

Abstract

IntroductionPatients with schizophrenia typically exhibit deficits in working memory (WM) associated with abnormalities in brain activity. Alterations in the encoding, maintenance and retrieval phases of sequential WM tasks are well established. However, due to the heterogeneity of symptoms and complexity of its neurophysiological underpinnings, differential diagnosis remains a challenge. We conducted an electroencephalographic (EEG) study during a visual WM task in fifteen schizophrenia patients and fifteen healthy controls. We hypothesized that EEG abnormalities during the task could be identified, and patients successfully classified by an interpretable machine learning algorithm.MethodsWe tested a custom dense attention network (DAN) machine learning model to discriminate patients from control subjects and compared its performance with simpler and more commonly used machine learning models. Additionally, we analyzed behavioral performance, event-related EEG potentials, and time-frequency representations of the evoked responses to further characterize abnormalities in patients during WM.ResultsThe DAN model was significantly accurate in discriminating patients from healthy controls, ACC = 0.69, SD = 0.05. There were no significant differences between groups, conditions, or their interaction in behavioral performance or event-related potentials. However, patients showed significantly lower alpha suppression in the task preparation, memory encoding, maintenance, and retrieval phases F(1,28) = 5.93, p = 0.022, η2 = 0.149. Further analysis revealed that the two highest peaks in the attention value vector of the DAN model overlapped in time with the preparation and memory retrieval phases, as well as with two of the four significant time-frequency ROIs.DiscussionThese results highlight the potential utility of interpretable machine learning algorithms as an aid in diagnosis of schizophrenia and other psychiatric disorders presenting oscillatory abnormalities.

Publisher

Frontiers Media SA

Subject

Psychiatry and Mental health

Reference85 articles.

1. Global epidemiology and burden of schizophrenia: Findings from the global burden of disease study 2016.;Charlson;Schizoph Bull.,2018

2. Cognitive models of positive and negative symptoms of schizophrenia and implications for treatment.;Batinic;Psychiatria Danubina.,2019

3. Primary and secondary negative symptoms in schizophrenia.;Mosolov;Front Psychiatry.,2022

4. Environmental risk factors for schizophrenia and bipolar disorder and their relationship to genetic risk: current knowledge and future directions.;Robinson;Front Genet.,2021

5. Evolving notions of schizophrenia as a developmental neurocognitive disorder.;Seidman;J Int Neuropsychol Soc.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3