Author:
Liang Mu Zi,Chen Peng,Knobf M. Tish,Molassiotis Alex,Tang Ying,Hu Guang Yun,Sun Zhe,Yu Yuan Liang,Ye Zeng Jie
Abstract
ObjectiveThe application of advanced Cognitive Diagnosis Models (CDMs) in the Patient Reported Outcome (PRO) is limited due to its complex statistics. This study was designed to measure resilience using CDMs and its prediction of 6-month Quality of Life (QoL) in breast cancer.MethodsA total of 492 patients were longitudinally enrolled from Be Resilient to Breast Cancer (BRBC) and administered with 10-item Resilience Scale Specific to Cancer (RS-SC-10) and Functional Assessment of Cancer Therapy-Breast (FACT-B). Generalized Deterministic Input, Noisy “And” Gate (G-DINA) was performed to measure cognitive diagnostic probabilities (CDPs) of resilience. Integrated Discrimination Improvement (IDI) and Net Reclassification Improvement (NRI) were utilized to estimate the incremental prediction value of cognitive diagnostic probabilities over total score.ResultsCDPs of resilience improved prediction of 6-month QoL above conventional total score. AUC increased from 82.6–88.8% to 95.2–96.5% in four cohorts (all P < 0.001). The NRI ranged from 15.13 to 54.01% and IDI ranged from 24.69 to 47.55% (all P < 0.001).ConclusionCDPs of resilience contribute to a more accurate prediction of 6-month QoL above conventional total score. CDMs could help optimize Patient Reported Outcomes (PROs) measurement in breast cancer.
Subject
Psychiatry and Mental health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献