Author:
Li Xue,Ono Chiaki,Warita Noriko,Shoji Tomoka,Nakagawa Takashi,Usukura Hitomi,Yu Zhiqian,Takahashi Yuta,Ichiji Kei,Sugita Norihiro,Kobayashi Natsuko,Kikuchi Saya,Kunii Yasuto,Murakami Keiko,Ishikuro Mami,Obara Taku,Nakamura Tomohiro,Nagami Fuji,Takai Takako,Ogishima Soichi,Sugawara Junichi,Hoshiai Tetsuro,Saito Masatoshi,Tamiya Gen,Fuse Nobuo,Kuriyama Shinichi,Yamamoto Masayuki,Yaegashi Nobuo,Homma Noriyasu,Tomita Hiroaki
Abstract
In this study, the extent to which different emotions of pregnant women can be predicted based on heart rate-relevant information as indicators of autonomic nervous system functioning was explored using various machine learning algorithms. Nine heart rate-relevant autonomic system indicators, including the coefficient of variation R-R interval (CVRR), standard deviation of all NN intervals (SDNN), and square root of the mean squared differences of successive NN intervals (RMSSD), were measured using a heart rate monitor (MyBeat) and four different emotions including “happy,” as a positive emotion and “anxiety,” “sad,” “frustrated,” as negative emotions were self-recorded on a smartphone application, during 1 week starting from 23rd to 32nd weeks of pregnancy from 85 pregnant women. The k-nearest neighbor (k-NN), support vector machine (SVM), logistic regression (LR), random forest (RF), naïve bayes (NB), decision tree (DT), gradient boosting trees (GBT), stochastic gradient descent (SGD), extreme gradient boosting (XGBoost), and artificial neural network (ANN) machine learning methods were applied to predict the four different emotions based on the heart rate-relevant information. To predict four different emotions, RF also showed a modest area under the receiver operating characteristic curve (AUC-ROC) of 0.70. CVRR, RMSSD, SDNN, high frequency (HF), and low frequency (LF) mostly contributed to the predictions. GBT displayed the second highest AUC (0.69). Comprehensive analyses revealed the benefits of the prediction accuracy of the RF and GBT methods and were beneficial to establish models to predict emotions based on autonomic nervous system indicators. The results implicated SDNN, RMSSD, CVRR, LF, and HF as important parameters for the predictions.
Subject
Psychiatry and Mental health
Reference90 articles.
1. Heart rate variability: a review;Acharya;Med Biol Eng Comput.,2006
2. Negative emotion detection using EMG signal;Gouizi,2014
3. Heart rate variability and emotion regulation among individuals with obesity and loss of control eating;Godfrey;Physiol Behav.,2019
4. Working memory training improves emotion regulation ability: evidence from HRV;Xiu;Physiol Behav.,2016
5. Emotion detection and recognition using HRV features derived from photoplethysmogram signals;Rakshit;Proceedings of the 2nd Workshop on Emotion Representations and Modelling for Companion Systems.,2016
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献