Landscape or local? Distinct responses of flower visitor diversity and interaction networks to different land use scales in agricultural tropical highlands

Author:

Escobedo-Kenefic Natalia,Casiá-Ajché Quebin Bosbely,Cardona Edson,Escobar-González Denisse,Mejía-Coroy Alfredo,Enríquez Eunice,Landaverde-González Patricia

Abstract

Land use change has been identified as a cause for biodiversity loss and has significant effects on pollinators and their interactions with plants. Interaction network analyses complement diversity estimators by providing information on the stability and functionality of the plant-pollinator community in an ecosystem. However, how land use changes affect insect diversity, and the structure of their plant-insect interaction networks, could depend on the intensity of the disturbance but also may be a matter of scale. Our study was carried out in a tropical highland landscape dominated by intense, yet diverse, small-scale agriculture. We studied the effects of land use, at a landscape scale, and local cover and plant ecological descriptors, at a local scale; on diversity descriptors of insect pollinator communities, the abundance of the most frequent flower visitors, and their interaction networks. Seminatural vegetation favored insect flower visitors at both scales. At the landscape scale, human settlements positively influenced bee diversity, and seminatural areas favored the abundance of frequent hoverfly and bumblebee species. At the local scale, bare soil cover negatively influenced honeybee abundance while flower-rich covers positively related to bumblebee abundance. Only local scale variables had influence on network metrics. Bare soil cover was related to higher network specialization, probably due to a low rate of honeybee interactions. Flower-rich covers negatively influenced network connectance but favored modularity. These results suggest that flower resources, provided by weed areas and flowering crops, promote a high rate of interactions between trophic levels and a non-random structure in the interaction networks that may be helping to sustain network stability. Our results highlight the role of seminatural vegetation, at both scales, in maintaining stable insect pollinator communities and interactions in heterogeneous agricultural landscapes of the tropics.

Funder

Universidad de San Carlos de Guatemala

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3