Herbage Yield, Lamb Growth and Foraging Behavior in Agrivoltaic Production System

Author:

Andrew Alyssa C.,Higgins Chad W.,Smallman Mary A.,Graham Maggie,Ates Serkan

Abstract

Agrivoltaic systems are designed to mutually benefit solar energy and agricultural production in the same location for dual-use of land. This study was conducted to compare lamb growth and pasture production from solar pastures in agrivoltaic systems and traditional open pastures over 2 years in Oregon. Weaned Polypay lambs grew at 120 and 119 g head−1 d−1 in solar and open pastures, respectively in spring 2019 (P = 0.90). The liveweight production between solar (1.5 kg ha−1 d−1) and open pastures (1.3 kg ha−1 d−1) were comparable (P = 0.67). Similarly, lamb liveweight gains and liveweight productions were comparable in both solar (89 g head−1 d−1; 4.6 kg ha−1 d−1) and open (92 g head−1 d−1; 5.0 kg ha−1 d−1) pastures (all P > 0.05) in 2020. The daily water consumption of the lambs in spring 2019 were similar during early spring, but lambs in open pastures consumed 0.72 L head−1 d−1 more water than those grazed under solar panels in the late spring period (P < 0.01). No difference was observed in water intake of the lambs in spring 2020 (P = 0.42). Over the entire period, solar pastures produced 38% lower herbage than open pastures due to low pasture density in fully shaded areas under solar panels. The results from our grazing study indicated that lower herbage mass available in solar pastures was offset by higher forage quality, resulting in similar spring lamb production to open pastures. Our findings also suggest that the land productivity could be greatly increased through combining sheep grazing and solar energy production on the same land in agrivoltaics systems.

Funder

Oregon State University

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference45 articles.

1. Solar PV power potential is greatest over croplands;Adeh;Sci. Rep,2019

2. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency;Adeh;PLoS ONE,2018

3. Agrivoltaic systems to optimise land use for electric energy production;Amaducci;Appl. Energy,2018

4. High-concentration photovoltaics for dual-use with agriculture;Apostoleris;AIP Conf. Proc,2019

5. Compromises in the design and conduct of grazing experiments,;Bransby,1989

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3