A Comparison of Springtime Pollen and Nectar Foraging in Honey Bees Kept in Urban and Agricultural Environments

Author:

McMinn-Sauder Harper,Lin Chia-Hua,Eaton Tyler,Johnson Reed

Abstract

Spring is an essential time for honey bee foraging in temperate climates. This is a period of increased brood rearing supporting colony growth and demands access to high-quality pollen and nectar resources. With the expansion of urban and agricultural landscapes, the availability of pollen and nectar producing flowers is declining in many areas. We aim to determine how patterns of spring pollen and nectar foraging differ between colonies surrounded by varying degrees of urban and agricultural intensity, as well as to assess the potential for nectar sampling to serve as a proxy for pollen collection. Thirteen apiaries in Central Ohio, along a gradient of urban and agricultural intensity, were monitored in spring of 2019 through the periodic collection of pollen and nectar samples and continuous colony weight monitoring. We found that spring honey bees in urban and agricultural areas gain comparable amounts of weight and use similar spring resources. Foraging was heavily focused on flowering trees and shrubs including Malus (apple), Salix (willow), and Prunus (cherry), until the beginning of clover bloom (Trifolium spp.). We also identified differences in pollen and nectar foraging within colonies, with nectar containing fewer species collected more evenly than matched pollen samples. These results demonstrate that honey bees in both agricultural and urban environments exhibit similar foraging patterns during the spring, and that plant species important for nectar collection are substantially different from plants important for pollen foraging, though limitations in nectar collection hinder our ability to draw definitive comparisons of pollen and nectar foraging in this region.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3