Identification of hickory nuts with different oxidation levels by integrating self-supervised and supervised learning

Author:

Kang Haoyu,Dai Dan,Zheng Jian,Liang Zile,Chen Siwei,Ding Lizhong

Abstract

The hickory (Carya cathayensis) nuts are considered as a traditional nut in Asia due to nutritional components such as phenols and steroids, amino acids and minerals, and especially high levels of unsaturated fatty acids. However, the edible quality of hickory nuts is rapidly deteriorated by oxidative rancidity. Deeper Masked autoencoders (DEEPMAE) with a unique structure for automatically extracting some features that could be scaleable from local to global for image classification, has been considered to be a state-of-the-art computer vision technique for grading tasks. This paper aims to present a novel and accurate method for grading hickory nuts with different oxidation levels. Owing to the use of self-supervised and supervised processes, this method is able to predict images of hickory nuts with different oxidation levels effectively, i.e., DEEPMAE can predict the oxidation level of nuts. The proposed DEEPMAE model was constructed from Vision Transformer (VIT) architecture which was followed by Masked autoencoders(MAE). This model was trained and tested on image datasets containing four classes, and the differences between these classes were mainly caused by varying levels of oxidation over time. The DEEPMAE model was able to achieve an overall classification accuracy of 96.14% on the validation set and 96.42% on the test set. The results on the suggested model demonstrated that the application of the DEEPMAE model might be a promising method for grading hickory nuts with different levels of oxidation.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3