Impact of contrasting tillage, residue mulch and nitrogen management on soil quality and system productivity under maize-wheat rotation in the north-western Indo-Gangetic Plains

Author:

Adak Sujan,Bandyopadhyay Kalikinkar,Purakayastha Tapan Jyoti,Sen Suman,Sahoo Rabi Narayan,Shrivastava Manoj,Krishnan Prameela

Abstract

The sustainability of dominant rice-wheat rotation is under threat due to numerous water-, nutrients-, weeds- and environment-related problems, mainly, due to rice cultivation in north-western Indo-Gangetic Plains (NWIGP) of India. It needs crop- and soil- appropriate management techniques with a focus on conservation agriculture (CA) that can maintain soil health which in turn is essential for long-term sustainability of intensive cereal-based systems. Thus, rice-wheat rotation may be diversified with maize as feasible substitute for rice. But, there is a dearth of comprehensive investigation on the impact of short-term CA in maize-wheat rotation, on soil quality. Hence, an attempt has been made to assess the system productivity (SP) and soil quality in a four-year-old CA-based maize-wheat rotation. Contrasting tillage as the main plot [Conventional tillage (CT), No–tillage (NT)], crop residue mulch as subplot [residue mulch (M+), no residue (M0)], and nitrogen [50 (N1), 100 (N2), 150% (N3) of recommended nitrogen dose] as sub-sub plot was laid out in split-split plot design. Soils sampled from 0–0.05, 0.05– 0.15, and 0.15–0.30 m soil layers were examined to develop a unified soil quality index (SQI) through principal component analysis (PCA) and expert opinion. The available K, P, total organic carbon (TOC), EC, bulk density (BD), dehydrogenase activity (DHA), and soil microbial biomass C (SMBC) were identified as the crucial minimum data set for SQI using PCA. Results showed that, NT and M+ plots had 10.52 and 17.39% higher mean weight diameter (MWD) than CT and M0, respectively at 0–0.05 m soil depth. NT and M+ plots increased TOC by 5.26 and 8% than CT and M0 plots, respectively in 0–0.05 m soil layer. Available K and P were found to be significantly higher in M+ plots than that of M0. NTM+ treatments improved SMBC and DHA than CTM0 treatments. The highest and lowest SQI was registered with NTM + N3 and CTM0N1, respectively. SP was significantly and positively correlated with SQI. Diversification of rice-wheat system with maize-wheat rotation following CA practices appears to have a positive impact on soil health. Therefore, CA-based maize-wheat rotation may be recommended to improve soil quality and system productivity in NWIGP region.

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

Reference100 articles.

1. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey;Acar;Eurasian J. Soil Sci.,2018

2. Mulches;Acharya,2005

3. Prediction of wheat yield using spectral reflectance indices under different tillage, residue and nitrogen management practices;Adak;Curr. Sci.,2021

4. Soil physical characteristics, productivity and input use efficiency of wheat (Triticum aestivum) as affected by different tillage, residue mulch and nitrogen management in maize-wheat cropping system;Adak;J. Agric. Phys.,2019

5. The soil management assessment framework;Andrews;Soil Sci. Soc. Am. J.,2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3