Optimization Based Modeling for the Food Supply Chain's Resilience to Outbreaks

Author:

Moynihan Emma,Avraam Charalampos,Siddiqui Sauleh,Neff Roni

Abstract

Scant research focuses on the resiliency of food supply chain networks to outbreaks, despite the estimated 600 million global foodborne illnesses annually. Outbreaks that cross country, state and provincial lines are virulent due to the number of people they can affect and difficulty controlling them. Research is needed on food supply chain networks, which are not well-characterized in relation to foodborne illnesses or generally. This paper introduces the United States Food, Energy, and State Transportation (US-FEAST) model and demonstrates its applicability via analysis of a hypothetical demand shock resulting from multistate food contamination. US-FEAST is an optimization-based model across all fifty states with yearly timesteps to 2030. It is a framework integrating food system data from multiple individual data sources. To calibrate, we develop a bilevel optimization routine to generate synthetic, state-level data and provide estimates of otherwise unavailable data at the intersections of the food and transportation systems. The results of US-FEAST elucidate potential heterogenous state-level variations in response, regional changes in food flows, vulnerabilities in the supply chain, and implications for food system resilience. While the generated data and scenarios are not empirical evidence, they provide insights to aid in planning by projecting outcomes and intervention effects. Our results estimate a 23% beef production decrease and 4% price decrease provide a road map toward data needs for quantifying food system resilience to foodborne illness. US-FEAST and its framework may have global utility for studying food safety in national and international food supply chain networks.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3