Defining features of diverse and productive agricultural systems: An archetype analysis of U.S. agricultural counties

Author:

Nelson Katherine S.,Burchfield Emily K.

Abstract

Prior research suggests that greater spatial diversity in crops and land use is associated with higher crop yields and improved ecosystem function. However, what leads to the emergence of agricultural systems that meet both productivity and ecological health goals remains an open question. Understanding the factors that differentiate these places from other agricultural systems is key to understanding the mechanisms, pathways, consequences, and constraints to employing diversification as a tool for increasing agricultural sustainability. In this study, we employ archetype analysis to examine the factors uniquely associated with the conjoint existence of high crop diversity and high crop productivity. We identify five agricultural system classes that represent a range of diversity and productivity combinations using k-means cluster analysis then use random forests analysis to identify factors that strongly explain the differences between the classes—describing different agricultural production regimes. Our exploratory analysis of the difference in agricultural system factors across classes suggests (1) crop diversity and its preconditions are associated with the highest yields, (2) biophysical conditions bound diversity-productivity realities, (3) productivity comes at a petrochemical cost, and that (4) crop rotations are a key diversification strategy. Overall, our results suggest that despite clear biophysical constraints on transitions to high diversity—high productivity systems the role of actionable factors on crop production regimes is stronger, providing reason to be hopeful about transitions to agricultural production regimes fit for new climate realities.

Funder

National Institute of Food and Agriculture

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3