Building “First Expire, First Out” models to predict food losses at retail due to cold chain disruption in the last mile

Author:

Herron Charles B.,Garner Laura J.,Siddique Aftab,Huang Tung-Shi,Campbell Jesse C.,Rao Shashank,Morey Amit

Abstract

Current less-than-truckload (LTL) shipping practices allow for temperature abuse (TA) in the last segment (last mile) of the food supply chain. When this TA is combined with “First In, First Out” product rotation methods, it could lead to food spoilage and food waste; therefore, data-based decision models are needed to aid retail managers. An experiment was designed using pallets (4 layers/pallet × 5 boxes/layer) of commercially produced boneless chicken breast filet trays. The pallets were exposed to 24 h of simulated LTL TA (cyclic 2 h at 4°C, then 2 h at 23 ± 2°C). Filet temperatures were recorded for all 20 boxes using dataloggers with thermocouple wires. Additionally, microbiological sampling of filets [aerobic plate counts (APC) and psychrotrophic plate counts (PSY)] was conducted before (0 h of LTL TA) and after (24 h of LTL TA) the TA experiment for select boxes of the pallet and compared to control filets (maintained at 4°C). After TA, a shelf-life experiment was conducted by storing filets from predetermined boxes at 4°C until spoilage (7 log CFU/ml). Temperature and microbiological data were augmented using Monte Carlo simulations (MC) to build decision making models using two methods; (1) the risk of each box on the pallet reaching the bacterial “danger zone” (>4°C) was determined; and (2) the risk-of-loss (shelf-life < 4 days; minimum shelf-life required to prevent food waste) was determined. Temperature results indicated that boxes on the top and bottom layers reached 4°C faster than boxes comprising the middle layers while the perimeter boxes of each layer reached 4°C faster than centrally located boxes. Shelf-life results indicate simulated LTL TA reduced shelf-life by 2.25 and 1.5 days for APC and PSY, respectively. The first MC method showed the average risk of boxes reaching 4°C after 24 h of simulated LTL TA were 94.96%, 43.20%, 27.20%, and 75.12% for layers 1–4, respectively. The second MC method indicated that exposure at >4°C for 8 h results in a risk-of-loss of 43.8%. The findings indicate that LTL TA decreases shelf-life of chicken breast filets in a heterogenous manner according to location of boxes on the pallet. Therefore, predictive models are needed to make objective decisions so that a “First Expire, First Out” method can be implemented to reduce food wastes due to TA during the last mile.

Funder

Foundation for Food and Agriculture Research

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3