Measured and modeled nitrogen balances in lowland rice-pasture rotations in temperate South America

Author:

Castillo Jesús,Kirk Guy J. D.,Rivero M. Jordana,Fabini Guillermo,Terra José A.,Ayala Walter,Roel Alvaro,Irisarri Pilar,Haefele Stephan M.

Abstract

Rotational rice systems, involving pastures, other crops and/or livestock, are common in temperate South America, exemplified by the rice-pasture-livestock system of Uruguay which combines very high rice yields with tight nitrogen (N) balances. The generally good nutrient use efficiency in these systems provides a template for nutrient management in other mixed farming systems, if the underlying processes can be sufficiently well quantified and understood. Here, we studied N balances in rice–non-rice rotations in a long-term experiment in Uruguay, with the aim of parameterizing and testing the DNDC model of N dynamics for such systems for use in future work. The experiment includes three rotations: continuous rice (RI-CONT), rice-soybean (RI-SOY) and rice-pasture (RI-PAST). We considered 9 years of data on N balances (NBAL), defined as all N inputs minus all N outputs; N surplus (NSURP), defined as all N inputs minus only N outputs in food products; and N use efficiency (NUE), defined as the fraction of N inputs removed in food products. We parameterized DNDC against measured yield and input and output data, with missing data on N losses inferred from the N balance and compared with literature values. The model performance was assessed using standard indices of mean error, agreement and efficiency. The model simulated crop yields and rice cumulative N uptake very well, and soil N reasonably well. The values of NBAL were +45 and−20 kg N ha−1 yr−1 in RI-CONT and RI-SOY, respectively, and close to zero in RI-PAST (−6 kg N ha−1 yr−1). Values of NSURP decreased in the order RI-CONT >> RI-SOY > RI-PAST (+115, +25 and +13 kg N ha−1 yr−1, respectively). Values of NUE (84, 54, and 48% for RI-SOY, RI-PAST, and RI-CONT, respectively) decreased as NBAL increased. The sensitivity of DNDC's predictions to the agronomic characteristics of the different crops, rotations and water regimes agreed with expectations. We conclude that the DNDC model as parameterized here is suitable for exploring how to optimize N management in these systems.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Frontiers Media SA

Subject

Horticulture,Management, Monitoring, Policy and Law,Agronomy and Crop Science,Ecology,Food Science,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3