Similarity-based parameter transferability in the quantum approximate optimization algorithm

Author:

Galda Alexey,Gupta Eesh,Falla Jose,Liu Xiaoyuan,Lykov Danylo,Alexeev Yuri,Safro Ilya

Abstract

The quantum approximate optimization algorithm (QAOA) is one of the most promising candidates for achieving quantum advantage through quantum-enhanced combinatorial optimization. A near-optimal solution to the combinatorial optimization problem is achieved by preparing a quantum state through the optimization of quantum circuit parameters. Optimal QAOA parameter concentration effects for special MaxCut problem instances have been observed, but a rigorous study of the subject is still lacking. In this work we show clustering of optimal QAOA parameters around specific values; consequently, successful transferability of parameters between different QAOA instances can be explained and predicted based on local properties of the graphs, including the type of subgraphs (lightcones) from which graphs are composed as well as the overall degree of nodes in the graph (parity). We apply this approach to several instances of random graphs with a varying number of nodes as well as parity and show that one can use optimal donor graph QAOA parameters as near-optimal parameters for larger acceptor graphs with comparable approximation ratios. This work presents a pathway to identifying classes of combinatorial optimization instances for which variational quantum algorithms such as QAOA can be substantially accelerated.

Publisher

Frontiers Media SA

Reference31 articles.

1. Parameter concentrations in quantum approximate optimization

2. Quantum computer systems for scientific discovery;Alexeev;PRX Quantum,2021

3. Beyond barren plateaus: Quantum variational algorithms are swamped with traps;Anschuetz;Nat. Commun.,2022

4. Quantum supremacy using a programmable superconducting processor;Arute;Nature,2019

5. The quantum approximate optimization algorithm at high depth for MaxCut on large-girth regular graphs and the sherrington-kirkpatrick model;Basso,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Quantum-Classical Multilevel Approach for Maximum Cuts on Graphs;2023 IEEE High Performance Extreme Computing Conference (HPEC);2023-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3