Optimization of processing conditions of starch-based hydrogels produced by high-pressure processing (HPP) using response surface methodology

Author:

Koshenaj Katerina,Ferrari Giovanna

Abstract

Introduction: This study aimed to determine the optimal processing conditions to produce stable starch-based hydrogels by high-pressure processing (HPP) via response surface methodology.Methods: The experiments were carried out with different starch suspensions, namely rice, corn, wheat, and tapioca starch, at a concentration in the range of 10%–40% w/w, processed at a pressure level of 600 MPa and holding times between 5 min and 15 min. Gel formation was assessed by determining the gelatinization extent and structuring level of the samples.Results and discussion: The results demonstrated that starch/water ratio and holding time had a significant impact on gel formation in HPP treatments. Various degrees of gelatinization were observed in the treated samples due to the water absorption capacity of the starch and the molecular interactions between water and starch occurring during gelatinization. Moreover, a highly structured hydrogel formed at starch concentrations higher than 25% (w/w), whereas when starch concentration was less than 20% (w/w) lower-structured hydrogels formed, as confirmed by the values of the efficiency index measured. Completely gelatinized, highly structured, and stable HPP hydrogels were obtained from starch solutions treated at the optimized processing conditions.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3