Non-lamellar lipid liquid crystalline nanoparticles: A smart platform for nanomedicine applications

Author:

Fornasier Marco,Murgia Sergio

Abstract

The increased interest of the scientific community in lipid nanoparticles has pushed the boundaries of personal medicine and drug delivery. The focus has been set on vesicular nanocarriers, as their structure and functionalities have been well described, but the application of their non-lamellar counterparts, cubosomes and hexosomes, has shown their potency as drug carriers. In addition, the sponge phase dispersion (L3, an intermediate between the lamellar and the bicontinuous cubic) has also been proved effective for the encapsulation of large macromolecules. Their physicochemical characterization has improved in the past decades due to the investigations conducted at high-power synchrotron facilities and the application of surface-sensitive techniques, discovering new connections between physical parameters and biological performance. Several administration routes of cubosomes and hexosomes have been studied, such as intravenous, dermal, transdermal, and oral, to evaluate their cytotoxicity and distribution in biological media. This review aims to summarize the challenges and recent achievements of cubosomes, hexosomes, and sponge nanoparticles as suitable carriers for the administration of bioactives.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3