Can the Concentration of a Transcription Factor Affect Gene Expression?

Author:

Koşar Zafer,Erbaş Aykut

Abstract

DNA is the ultimate molecule that encodes life through genes. Genes positioned along the meter-long DNA molecule have to be expressed at the right time and in the right amount via strict regulatory processes. Regulation of a gene starts with the binding of a DNA-binding protein known as a transcription factor (TF) to a target regulatory element along the double-stranded DNA molecule. Often, TFs attach to DNA in a sequence-specific manner and can target DNA motifs of various lengths, yet some TFs can also interact with DNA nonspecifically. The resulting DNA-TF complexes can control gene expression directly via controlling the recruitment of RNA polymerase on the target DNA sequence. Recent single-molecule experiments have added a new dimension to such control mode; the lifetime of a DNA-TF complex (i.e., the residence time of the protein on its DNA site) can function as a regulatory component. This breakthrough inevitably suggests that any physiochemical constituent that can alter the residence time of a DNA-binding protein can also be involved in gene regulation. In this perspective, we argue that a TF protein’s cellular concentration can contribute to the cell-scale transcription activity by modulating the DNA-residence time of the protein. Cells can achieve this either by enabling a concentration-dependent dissociation mechanism or by promoting the formation of multiprotein-DNA complexes. While our discussion here will consider examples from prokaryotic cells, we will also briefly argue that similar mechanisms could also be functional in eukaryotic cells.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3