Time-Delayed Tandem Microwave Observations of Tropical Deep Convection: Overview of the C2OMODO Mission

Author:

Brogniez Hélène,Roca Rémy,Auguste Franck,Chaboureau Jean-Pierre,Haddad Ziad,Munchak Stephen J.,Li Xiaowen,Bouniol Dominique,Dépée Alexis,Fiolleau Thomas,Kollias Pavlos

Abstract

Convective clouds serve as a primary mechanism for the transfer of thermal energy, moisture, and momentum through the troposphere. Arguably, satellite observations are the only viable way to sample the convective updrafts over the oceans. Here, the potential of temporal derivatives of measurements performed in H2O lines (183GHz and 325 GHz) to infer the deep convective vertical air motions is assessed. High-resolution simulations of tropical convection are combined with radiative transfer models to explore the information content of time-derivative maps (as short as 30 s) of brightness temperatures (dTb/dt). The 183-GHz Tb signal from hydrometeors is used to detect the location of convective cores. The forward simulations suggest that within growing convective cores, the dTb/dt is related to the vertically integrated ice mass flux and that it is sensitive to the temporal evolution of microphysical properties along the life cycle of convection. In addition, the area-integrated dTb/dt, is related to the amount, size, and density of detrained ice, which are controlled by riming and aggregation process rates. These observations, particularly in conjunction with Doppler velocity measurements, can be used to refine these assumptions in ice microphysics parameterizations. Further analyses show that a spectral sampling of the 183 GHz absorbing line can be used to estimate the maximum in-cloud vertical velocity that is reached as well as its altitude with reasonable uncertainties.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3