Beryllium solubility and hydrolysis in dilute to concentrated CaCl2 solutions: thermodynamic description in cementitious systems

Author:

Çevirim-Papaioannou Nese,Androniuk Iuliia,Miron George Dan,Altmaier Marcus,Gaona Xavier

Abstract

The solubility and hydrolysis of Be(II) was investigated from undersaturation conditions in alkaline, dilute to concentrated CaCl2 solutions (0.05–3.5 M). Experiments were performed with α-Be(OH)2(cr) under Ar atmosphere at T = (22 ± 2)°C. Aqueous Be speciation was further investigated by means of molecular dynamics (MD) calculations. For the most diluted CaCl2 systems (0.05 and 0.25 M), a solubility minimum is observed at pHm ≈ 9.5 {with [Be(II)] ≈ 10−7 M}, consistent with solubility data previously reported in NaCl and KCl solutions. Above this pHm, and at higher CaCl2 concentrations, a steep increase in the solubility with a slope of ∼ +2 is observed, hinting towards the predominance of the moiety [Be(OH)42–] in the aqueous phase. In NaCl and KCl systems, this hydrolysis species prevails only above pHm ∼ 13, thus supporting the formation of ternary complex/es Ca–Be(II)–OH(aq) in CaCl2 solutions. The analysis of solubility data in combination with MD calculations underpin the key role of the complex Ca2[Be(OH)4]2+ in alkaline to hyperalkaline systems containing Ca. In combination with our previous work in NaCl–NaOH and KCl–KOH systems, complete chemical, thermodynamic and (SIT) activity models are derived for the first time for the system Be2+–Ca2+–Na+–K+–H+–Cl–OH–H2O(l). This model provides an accurate and robust tool for the evaluation of Be(II) solubility and speciation in a diversity of geochemical conditions, including source term calculations of beryllium in the context of repositories for nuclear waste disposal with a high cement inventory.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3