Author:
Brock Stephan,Soldatos Theodoros G.,Jackson David B.,Diella Francesca,Hornischer Klaus,Schäfer Anne,Hoerstrup Simon P.,Emmert Maximilian Y.
Abstract
Since early 2020 the COVID-19 pandemic has paralyzed the world, resulting in more than half a billion infections and over 6 million deaths within a 28-month period. Knowledge about the disease remains largely disjointed, especially when considering the molecular mechanisms driving the diversity of clinical manifestations and symptoms. Despite the recent availability of vaccines, there remains an urgent need to develop effective treatments for cases of severe disease, especially in the face of novel virus variants. The complexity of the situation is exacerbated by the emergence of COVID-19 as a complex and multifaceted systemic disease affecting independent tissues and organs throughout the body. The development of effective treatment strategies is therefore predicated on an integrated understanding of the underlying disease mechanisms and their potentially causative link to the diversity of observed clinical phenotypes. To address this need, we utilized a computational technology (the Dataome platform) to build an integrated clinico-molecular view on the most important COVID-19 clinical phenotypes. Our results provide the first integrated, whole-patient model of COVID-19 symptomatology that connects the molecular lifecycle of SARS-CoV-2 with microvesicle-mediated intercellular communication and the contact activation and kallikrein-kinin systems. The model not only explains the clinical pleiotropy of COVID-19, but also provides an evidence-driven framework for drug development/repurposing and the identification of critical risk factors. The associated knowledge is provided in the form of the open source COVID-19 Explorer (https://covid19.molecularhealth.com), enabling the global community to explore and analyze the key molecular features of systemic COVID-19 and associated implications for research priorities and therapeutic strategies. Our work suggests that knowledge modeling solutions may offer important utility in expediting the global response to future health emergencies.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献